Skip to content Skip to sidebar Skip to footer

layoutlmv2-large-uncased-finetuned-vi-infovqa






layoutlmv2-large-uncased-finetuned-vi-infovqa

This model is a fine-tuned version of microsoft/layoutlmv2-large-uncased on an unknown dataset.
It achieves the following results on the evaluation set:

  • Loss: 8.5806





Model description

More information needed





Intended uses & limitations

More information needed





Training and evaluation data

More information needed





Training procedure





Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 250500
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6





Training results

Training Loss Epoch Step Validation Loss
No log 0.17 100 4.6181
No log 0.33 200 4.3357
No log 0.5 300 4.3897
No log 0.66 400 4.8238
4.4277 0.83 500 3.9088
4.4277 0.99 600 3.6063
4.4277 1.16 700 3.4278
4.4277 1.32 800 3.5428
4.4277 1.49 900 3.4331
3.0413 1.65 1000 3.3699
3.0413 1.82 1100 3.3622
3.0413 1.98 1200 3.5294
3.0413 2.15 1300 3.7918
3.0413 2.31 1400 3.4007
2.0843 2.48 1500 4.0296
2.0843 2.64 1600 4.1852
2.0843 2.81 1700 3.6690
2.0843 2.97 1800 3.6089
2.0843 3.14 1900 5.5534
1.7527 3.3 2000 4.7498
1.7527 3.47 2100 5.2691
1.7527 3.63 2200 5.1324
1.7527 3.8 2300 4.5912
1.7527 3.96 2400 4.1727
1.2037 4.13 2500 6.1174
1.2037 4.29 2600 5.7172
1.2037 4.46 2700 5.8843
1.2037 4.62 2800 6.4232
1.2037 4.79 2900 7.4486
0.8386 4.95 3000 7.1946
0.8386 5.12 3100 7.9869
0.8386 5.28 3200 8.0310
0.8386 5.45 3300 8.2954
0.8386 5.61 3400 8.5361
0.4389 5.78 3500 8.6040
0.4389 5.94 3600 8.5806





Framework versions

  • Transformers 4.15.0
  • Pytorch 1.8.0+cu101
  • Datasets 1.17.0
  • Tokenizers 0.10.3



Source link

Leave a comment